Competitive inhibition of SGLT2 by tofogliflozin or phlorizin induces urinary glucose excretion through extending splay in cynomolgus monkeys.
نویسندگان
چکیده
Sodium-glucose cotransporter 2 (SGLT2) inhibitors showed a glucose lowering effect in type 2 diabetes patients through inducing renal glucose excretion. Detailed analysis of the mechanism of the glucosuric effect of SGLT2 inhibition, however, has been hampered by limitations of clinical study. Here, we investigated the mechanism of urinary glucose excretion using nonhuman primates with SGLT inhibitors tofogliflozin and phlorizin, both in vitro and in vivo. In cells overexpressing cynomolgus monkey SGLT2 (cSGLT2), both tofogliflozin and phlorizin competitively inhibited uptake of the substrate (α-methyl-d-glucopyranoside; AMG). Tofogliflozin was found to be a selective cSGLT2 inhibitor, inhibiting cSGLT2 more strongly than did phlorizin, with selectivity toward cSGLT2 1,000 times that toward cSGLT1; phlorizin was found to be a nonselective cSGLT1/2 inhibitor. In a glucose titration study in cynomolgus monkeys under conditions of controlled plasma drug concentration, both tofogliflozin and phlorizin increased fractional excretion of glucose (FEG) by up to 50% under hyperglycemic conditions. By fitting the titration curve using a newly introduced method that avoids variability in estimating the threshold of renal glucose excretion, we found that tofogliflozin and phlorizin lowered the threshold and extended the splay in a dose-dependent manner without significantly affecting the tubular transport maximum for glucose (TmG). Our results demonstrate the contribution of SGLT2 to renal glucose reabsorption (RGR) in cynomolgus monkeys and demonstrate that competitive inhibition of cSGLT2 exerts a glucosuric effect by mainly extending splay and lowering threshold without affecting TmG.
منابع مشابه
Selective SGLT2 inhibition by tofogliflozin reduces renal glucose reabsorption under hyperglycemic but not under hypo- or euglycemic conditions in rats.
To understand the risk of hypoglycemia associated with urinary glucose excretion (UGE) induced by sodium-glucose cotransporter (SGLT) inhibitors, it is necessary to know the relationship between the ratio of contribution of SGLT2 vs. SGLT1 to renal glucose reabsorption (RGR) and the glycemic levels in vivo. To examine the contributions of SGLT2 and SGLT1 in normal rats, we compared the RGR inhi...
متن کاملIn vitro-in vivo correlation of the inhibition potency of sodium-glucose cotransporter inhibitors in rat: a pharmacokinetic and pharmacodynamic modeling approach.
To evaluate the relationship between the in vitro and in vivo potency of sodium-glucose cotransporter (SGLT) inhibitors, a pharmacokinetic and pharmacodynamic (PK-PD) study was performed using normal rats. A highly selective SGLT2 inhibitor, tofogliflozin, and four other inhibitors with different in vitro inhibition potency to SGLT2 and selectivity toward SGLT2, versus SGLT1 were used as test c...
متن کاملSergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level.
The low-affinity sodium glucose cotransporter (SGLT2), which is expressed specifically in the kidney, plays a major role in renal glucose reabsorption in the proximal tubule. We have discovered sergliflozin, a prodrug of a novel selective SGLT2 inhibitor, based on benzylphenol glucoside. In structure, it belongs to a new category of SGLT2 inhibitors and its skeleton differs from that of phloriz...
متن کاملThe diabetic proximal tubule: part of the problem, and part of the solution?
PHYSIOLOGICAL INTEREST IN RENAL glucose handling dates to the era of whole organ experiments, with the description of a renal glucose threshold (Tm) and osmotic diuresis (22). Micropuncture identified the proximal tubule as the locus of glucose reabsorption (3), and brush border vesicle preparations (1, 8) and cellular electrophysiology (4, 18) established the Na dependence of that luminal gluc...
متن کاملEffects of sodium-glucose cotransporter 2 inhibitors on urinary excretion of intact and total angiotensinogen in patients with type 2 diabetes
We conducted a descriptive case study to examine the effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on urinary angiotensinogen excretion, which represents the function of the intrarenal renin-angiotensin system, in patients with type 2 diabetes. An SGLT2 inhibitor (canagliflozin 100 mg/day, ipragliflozin 25 mg/day, dapagliflozin 5 mg/day, luseogliflozin 2.5 mg/day or tofogliflozin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 306 12 شماره
صفحات -
تاریخ انتشار 2014